
Implementation and Evaluation

of Certificate Revocation List Distribution

for Vehicular Ad-hoc Networks

Petra Ardelean
advisor: Panos Papadimitratos

January 2009

Abstract

Vehicular Ad-hoc Networks (VANETs) were de-
signed to provide safety and comfort for passen-
gers. Security measurements have to be taken
for guaranteeing these. The security consists in
making use of asymmetric cryptography for sign-
ing messages sent out by the vehicle. But cryp-
tographic material can be compromised or a mis-
behavior can occur due to some errors. For these
reasons the VANET entities credentials should
be revoked. The Certificate Authority (CA),
for this reason, will make Certificate Revocation
Lists (CRLs) and send them to the vehicles. We
propose here an implementation of CRL distribu-
tion mechanism and the experimental evaluation
of the resulted system.

1 Introduction

VANET’s main functionalities are safety and
entertainment application. Safety is primary
relying on information got from neighbor vehi-
cles. Examples of such are speed and location.
But for taking them into account the vehicle
has to know that they are correct. For this
reason asymmetric cryptography is used. Each
vehicle has a secret key and publicly known
key. The last one’s authenticity is certified
by a Certificate Authority (CA). Sometimes
nodes can be faulty or captured by an attacker,

therefor the cryptographic credentials should
be removed. One solution is to create CRLs,
which contain the identifiers of all certificates
that should be revoked. After being created by
the CA, it should find a way to send them to
the vehicles. Multiple solutions were proposed
on how to send the CRLs to the vehicles.

A solution is to relay only in the Road
Site Units (RSUs) for the distribution of the
CRLs. Each RSU is broadcasting the CRL
to the vehicles which are its neighborhood. A
variant of this solution is to divided the CRL
into redundant pieces and send these pieces to
the vehicle via the RSUs [1]. Another proposal is
to let vehicles broadcasting the CRLs and rely to
the RSUs only for starting the dissemination of
the CRLs. This solution is a good approach for
systems with weekly deployed infrastructure. In
[3] an optimized version is used, where vehicles
broadcast only CRL updates to their neighbors.
The implementation of the former idea is the
scope of this project.

2 Main idea

The focus of this project is to implement the
schema proposed by P. Papadimitratos, et al,
described in [1] and to do experimental evalua-
tion of the system. The overall schema can be
found in Figure 1. A schematic description of

1



the system is given below.
First, the CA generates the CRL and divides

Figure 1: General schema

it into M equal length pieces. These pieces are
encoded, using an erasure code, into N redun-
dant pieces. Each piece has a header added,
then it is signed by the Certificate Authority
(CA). The header contains the CRL version,
time stamp (for avoiding reply attacks), the
sequence number of the encoded piece and the
CA’s ID. Figure 2 gives a visual representation
of the method. After this step the new pieces
are send to the RSUs, which are broadcasting
them to the vehicles.

When receiving one of these signed pack-

Figure 2: Encoding the CRL

ets the vehicle first verifies the timestamp of
the message, then the signature. The signature
verification is done by searching in its database
the public key associated to the CA ID ex-
tracted from the message. If the signature is
valid then the vehicle verifies if it has already
this piece stored, if not it stores the piece with

the associated sequence number. When it has
enough pieces it will decode them and obtain
the original CRL.

3 Implementation details

The CRL Distribution System implementation
is made in the C++ programming language,
using the OpenSSL[5] cryptographic library. We
Summer that the necessary vectors used for
encoding and decoding are preinstalled both in
the CA and the vehicles.

A modular approach is used for the imple-
mentation of the CRL Distribution System. It
is compound of the following two modules: CA
and Network Communication (Figure 3). The
CA is responsible for:

• Generating certificates and CRLs. The
CA generates X509 certificates for the vehi-
cles. If some vehicles are faulty or their cryp-
tographic material were compromised the
CA creates a CRL for the certificates owned
by these vehicle. These are X509 CRLs.

• Encoding the generated CRLs. The en-
coding is done by using the Rabin’s algo-
rithm as an erasure code[4]. The description
of the method is given bellow.

• Signing encoded piece using the ECDSA
cryptographic algorithm.

The Network Communication has the knowledge
of the network. It has information about the
number of the RSUs, how to get to them and
how many pieces it has to send to each of them.
It reads a configuration file in which there are
written the IP addresses of the RSUs and stores
them in a structure. Loose source routing is used
for sending different pieces to these IPs. These
ensures that each RSU gets only a random subset
of the N encoded pieces. When the RSUs get the
packet they will broadcast it to the network. The
UDP protocol was chosen for encapsulating these
messages because of its simplicity.

2



Figure 3: CRL Distribution System

Encoding and Decoding

Robin’s algorithm is used for giving redundancy.
The original message is viewed as a stream of m
bytes. The operations are made in the Galois
field mod p. A matrix ANxM is build with N
vectors of dimension M, with the property that
M of them are linearly independent.

For encoding the message is divided into L
pieces of length M, with padding if necessarily.
These pieces are arranged as a column in a
matrix BMxL. Then the WNxL = ANxMXBMxL

is computed. Each row in the W matrix is a
redundant piece.

The input is the message cut into pieces
and the output are N redundant pieces. It is
enough of having M pieces (M<N) to decode the
original message. The redundancy ratio is N/M.

A more complex description of the algo-
rithm can be found in [4]. The Galois field
operations used are implemented by Arash
Partow[6] and the matrix inversion is made with
the Gauss-Jordan elimination with pivoting
method. This source code can be found at [7].

4 Experimental Evaluation

The experiment consists in one machine running
the CRL distribution system, one Access Point
(AP) playing the role of the RSU and one
laptop equipped with wireless card playing the
role of a vehicle (see Figure 4). The laptop’s
configuration is showed in Table 1. The AP rate
is 5.5 Mbps.
The goal of the experiments is to determine how

Figure 4: Experimental settings

CPU Intel 2 GHz
Operating System Linux
Libraries openSSL 0.9.8g
C compiler gcc 4.1.2
Wireless card 802.11g

Table 1: Laptop’s configuration

much time it takes to a vehicle to get the original
CRL (measured from the time the first encoded
piece is received) when varying the CRL size and
also when changing the encoding vectors (more
explicitly varying N and M). From a theoretical
point of view this value can be computed as:
tgetCRL = M ∗ (tvs + ttransmit) + tdecode. Where
tvs is the time needed to verify the signature
of a received encoded piece, ttransmit is the
transmission time over the wireless channel and
tdecode is the time needed to decode the pieces.

The results for the settings described above
for CRL sizes of 200 B, 350 B and 500 B and
N=4, M=3 and N=11, M=10 are displayed in
Figure 5. It can be observed that with a small
value of M the time to get the CRL is smaller
because there are just a few pieces which are

3



transmitted over the medium and need signature
verification at the vehicle side. The drawback
of using a small M is when having large CRLs,
while the length of one piece is large and the
transmission time over the wireless channel
will increase. If the packet length outruns the
MTU then IP fragmentation is needed which
adds delays. On the other hand if M has a
big value and the CRL is small there is the
disadvantage that the sent pieces are too small,
so the transmission time increases. Figure 6
shows results for CRL sizes of 8100 B, 40100
B and 80100 B and N=51, M=50 and N=101,
M=100. We can observe that if the CRL size is
large then the values N and M should be larger
too. In conclusion N and M should be chosen in
accordance with the length of the CRL. Please
note that the X and Y axes of the figures are
not the same.

Figure 5: Experimental results for small values
of M

5 Conclusions

An implementation of a CRL distribution system
for VANET was achieved. With the performance
measurements made we can see how the system
is performing with different CRL size and differ-
ent encoding vectors. Even thought the testing
system is just a small subset of a real vehicular
network it can give us some hints about how this
distribution would work in the real system.

Figure 6: Experimental results for large values of
M

6 Further work

One further action consists in making the exper-
iments described in Section 4 but changing the
settings by adding two more AP. So, there will
be one machine running the CRL distribution
system, tree APs playing the role of the RSUs
and one laptop equipped with wireless card
playing the role of a vehicle. These would be
more realistic measurements while they will
take into consideration also the movement
of the vehicle. Having smaller velocity then
a vehicle in the real world is not a problem
while the APs’ power range is smaller then the
RSUs’, so the time the laptop spends in the
range of an AP is comparable with the time
a vehicle would stay in the range of a RSU.
After having this results, we want to compare
them with the results of the simulations from [1].

An other further action would be to inte-
grate this project into an already existing
one. This project implements Secure Vehicular
Communications. This project has the imple-
mentation of the Certificate Authority (CA),
Pseudonym Provider(PP) and vehicles. Vehicles
can request certificate and pseudonyms from the
CA, respectively PP and also sending to each
other secured beacon messages.

4



Appendix A

How to run the applications

For running the applications it is necessary to
have installed an OpenSSL version equal or
grater then 0.9.8a and a gcc compiler. Scripts
are provided for compiling and running the soft-
ware. For running the CA use runCA.sh and for
the vehicle runVehicle.sh. The contain of these
scripts are listed bellow. You can use this as a
guide line for compiling and running the appli-
cations in the command line.

• The CA

– the command for compiling
g + +− g −O0− lcrypto
../maths/matrixinverse/inv.c
../sourceRoute/sourceroute.c
../maths/galoisF ield/GaloisF ield.cpp
../vehicle/V ehicle.cpp
../BytesConvertor.cpp
../T imeStamp.cpp
../CryptoModule.cpp
../CodingModule.cpp
CA.cpp../NetworkComm.cpp
Main.cpp− oca

– the command for running the vehicle
application
./ca < networkConfigurationF ile >
< codingConfigurationF ile >
< IPaddr >< socketPortNo >
< privateKeyPath >
< revokedCertificateNo >

• The vehicle

– the command for compiling
g + +− g −O0− lcrypto
../maths/matrixinverse/inv.c
../sourceRoute/sourceroute.c
../maths/galoisF ield/GaloisF ield.cpp
../NetworkComm.cpp
../BytesConvertor.cpp
../T imeStamp.cpp
../CryptoModule.cpp

../CodingModule.cpp
V ehicle.cpp
Main.cpp− ovehicle

– the command for running the vehicle
application
./vehicle < socketPortNo >
< CAkeysPath >
< codingConfigurationF ile >

References

[1] P. Papadimitratos, G. Mezzour, and J.-P.
Hubaux, “Certificate Revocation List Dis-
tribution in Vehicular Communication Sys-
tems”, short paper, ACM VANET 2008, San
Francisco, CA, USA, September 2008

[2] P. Papadimitratos, L. Buttyan, T. Holczer,
E. Schoch, J. Freudiger, M. Raya, Z. Ma, F.
Kargl, A. Kung, and J.-P. Hubaux, “Secure
Vehicular Communications: Design and Ar-
chitecture”, IEEE Communications Maga-
zine, November 2008

[3] K. Laberteaux, J. Haas, and Y-C Hu, “Secu-
rity Certicate Revocation List Distribution
for VANET”, ACM Mobicom International
Workshop on Vehicular Ad Hoc Networks
(VANET), San Francisco, USA, September
2008.

[4] P. Papadimitratos and Z.J. Haas, “Secure
Message Transmission in Mobile Ad Hoc
Networks”, Elsevier Ad Hoc Networks Jour-
nal, July 2003

[5] OpenSSL Project, http://openssl.org/

[6] Galois Field Arithmetic Library,
http://www.partow.net/projects/galois/

[7] Gauss-Jordan Elimination,
http://www.dreamincode.net/code/snippet1312.htm

5


